class PiecewiseBackend:
def __init__(
self,
graph: fx.GraphModule,
vllm_config: VllmConfig,
piecewise_compile_index: int,
total_piecewise_compiles: int,
sym_shape_indices: list[int],
vllm_backend: VllmBackend,
):
"""
The backend for piecewise compilation.
It mainly handles the compilation of static shapes and
dispatching based on runtime shape.
We will compile `self.graph` once for the general shape,
and then compile for different shapes specified in
`compilation_config.compile_sizes`.
"""
self.graph = graph
self.vllm_config = vllm_config
self.compilation_config = vllm_config.compilation_config
self.piecewise_compile_index = piecewise_compile_index
self.total_piecewise_compiles = total_piecewise_compiles
self.vllm_backend = vllm_backend
self.is_first_graph = piecewise_compile_index == 0
self.is_last_graph = piecewise_compile_index == total_piecewise_compiles - 1
self.is_full_graph = total_piecewise_compiles == 1
self.compile_ranges = self.compilation_config.get_compile_ranges()
log_string = f"PiecewiseBackend: compile_ranges: {self.compile_ranges}"
logger.debug_once(log_string)
self.compile_sizes = self.compilation_config.compile_sizes
log_string = f"PiecewiseBackend: compile_sizes: {self.compile_sizes}"
logger.debug_once(log_string)
self.sym_shape_indices = sym_shape_indices
# the entries for ranges that we need to either
self.range_entries: dict[Range, RangeEntry] = {}
# to_be_compiled_ranges tracks the remaining ranges to compile,
# and updates during the compilation process, so we need to copy it
self.to_be_compiled_ranges: set[Range] = set(self.compile_ranges)
# We only keep compilation management inside this class directly.
for size in self.compile_sizes:
range = Range(start=size, end=size)
if range not in self.compile_ranges:
self.range_entries[range] = RangeEntry(
compile_range=range,
)
self.to_be_compiled_ranges.add(range)
for range in self.compile_ranges:
self.range_entries[range] = RangeEntry(
compile_range=range,
)
def check_for_ending_compilation(self):
if self.is_last_graph and not self.to_be_compiled_ranges:
# no specific sizes to compile
# save the hash of the inductor graph for the next run
self.vllm_backend.compiler_manager.save_to_file()
end_monitoring_torch_compile(self.vllm_config)
def _fakify_args(self, args: list[Any]) -> list[Any]:
# We need to pass fake example_inputs, otherwise torch.compile
# will fakify the example_inputs potentially causing some non dynamic
# dimension to be be duck shaped to other existing shapes that have hints
# matching their values.
# This is problem because it can lead to unintended specializations!
# if the new wrongly dynamic dim is specialized
# it will force specializing the whole shape
# torch.compile probably should not accept
# non fake tensors as example inputs!
# See issue https://github.com/vllm-project/vllm/issues/27899
fake_example_inputs = []
for node in self.graph.graph.nodes:
# All place holders come first
if node.op == "placeholder":
fake_example_inputs.append(node.meta["example_value"])
else:
break
assert len(fake_example_inputs) == len(args)
return fake_example_inputs
def _maybe_compile_for_range_entry(self, range_entry: RangeEntry, args) -> Any:
if not range_entry.compiled:
range_entry.compiled = True
self.to_be_compiled_ranges.remove(range_entry.compile_range)
# args are real arguments
# fakify for range, real args for concrete size.
# For concrete size, we clear the shape env in
# compiler_manager.compile() so no need to fakify.
args = (
self._fakify_args(args)
if not range_entry.compile_range.is_single_size()
else args
)
range_entry.runnable = self.vllm_backend.compiler_manager.compile(
self.graph,
args,
self.vllm_backend.inductor_config,
self.compilation_config,
compile_range=range_entry.compile_range,
graph_index=self.piecewise_compile_index,
num_graphs=self.total_piecewise_compiles,
)
self.check_for_ending_compilation()
def _find_range_for_shape(self, runtime_shape: int) -> Range | None:
# First we try to find the range entry for the concrete compile size
# If not found, we search for the range entry
# that contains the runtime shape.
if runtime_shape in self.compile_sizes:
return self.range_entries[Range(start=runtime_shape, end=runtime_shape)]
else:
for range in self.compile_ranges:
if runtime_shape in range:
return self.range_entries[range]
return None
def __call__(self, *args) -> Any:
runtime_shape = args[self.sym_shape_indices[0]]
range_entry = self._find_range_for_shape(runtime_shape)
assert range_entry is not None, (
f"Shape out of considered range: {runtime_shape} "
"[1, max_num_batched_tokens]"
)
self._maybe_compile_for_range_entry(range_entry, args)
return range_entry.runnable(*args)